

Conformationally Constrained Amino Acids: a Convenient Approach to cis-2,3-Methano-GABAs

Luca Forti,1* Franco Ghelfi, Stefano Levizzani and Ugo M. Pagnoni

Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena (Italy)

Received 4 January 1999; revised 12 February 1999; accepted 17 February 1999

Abstract

3-Aza-2-oxo-bicyclo[3.1.0]hexanes, which are opened to 2,3-methano-γ-aminobutyric acids, are obtained in very high yields by a two step procedure from N-protected-N-allyl-α-Br-amides. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: amino acids and derivatives; cyclopropanation; lactams; radicals and radical reactions.

Cyclopropyl amino acids have been used to obtain conformationally constrained peptides [1]. In fact, if such a structure is present in a peptide chain, severe changes in the neighbouring framework are expected affecting the ability to fit a biologically active site. Recently, γ -peptides have received considerable attention because they can give rise to stable right-handed helical secondary structures [2,3]. For these reasons, we here report a straightforward preparation of cyclopropyl γ -amino acids.

It has been reported that 2,3-methano-4-aminobutyric acids can be obtained from 3-aza-2-oxobicyclo[3.1.0]hexanes [4], usually prepared via α -diazo amides [5] or by a tandem Michael-S_N2 reaction [6]; two other methodologies, based on a tandem radical cyclization-intramolecular S_N2 reaction of ∂ -ethylenic α , α -dichloromalonamides [7] or by an intramolecular alkylation of 4-methanesulphonylpyrrolidin-2-one [4], have been reported.

As a part of a program aimed at applying the halogen atom transfer radical cyclization to the synthesis of heterocyclic compounds with biological activity, we found that 3-aza-2-oxo-bicyclo[3.1.0]hexane, a latent form of 2,3-methano-4-aminobutyric acid (2,3-methano-GABA), may be conveniently synthesized from N-protected-N-allyl-α-Br-amides. Our approach is based on the two step procedure reported in scheme 1. Monobromo amides 1 are first quantitatively converted into the two diastereomeric lactams 2a,b, by halogen atom transfer radical cyclization promoted by a catalytic amount (0.075 mol/mol substrate) of Cu(bipy)₂Br in CH₃CN under Ar in a Schlenk vessel. Then, the isolated primary alkyl bromides are dehydrobrominated by DBU (1.5 mol/mol substrate) in CH₃CN, affording the bicyclic system 3 in overall high yield (91-96 mol%); a number of 3-aza-2-oxobicyclo[3.1.0]hexanes are thus conveniently synthesized (scheme 1) [8].

By comparison, N-deprotection is a rather difficult step, giving rise to relatively low yields. Different deprotection methods have been tried both for benzyl and tosyl groups; the best results have

¹ To whom correspondence should be addressed; Fax: (+39) 059 373543; E-mail: forti@pascal.unimo.it

been obtained with Li (5 equivalents)-NH₃ (ca. 7ml/mmol substrate) at -78°C in THF/t-BuOH 9:1 (3 ml/mmol substrate) and with Li (14 equivalents)-naphthalene (0.04 equivalents) at -15°C in THF.

Bn = benzyl; Ts = toluene-p-sulphonyl

N-Deprotection of the benzyl group by Li-NH₃ occurs without affecting the cyclopropane ring only if R' = alkyl or H; when R' = phenyl the cyclopropane is opened. The N-deprotected derivatives 4 have been purified by silica gel chromatography (ethyl acetate); finally, the lactam ring is opened by 1M HCl at 70°C with high yield, without cleavage of the cyclopropane group, affording the 2,3-methano-4-aminobutyric acids 5 (scheme 2 and table).

Table
Synthesis of 2,3-methano-4-aminobutyric acids 5.^a

R'	R"	Pb	3 - 4°	4-5d
CH ₃	CH ₃	Bn	64	85
(CH ₃) ₂ CH	CH ₃	Bn	62	84
CH ₃	H	Ts	72	88
(CH ₃) ₂ CH	Н	Ts	69	86

*Reactions were performed on 5 mmol of lactams 3. *Bn = benzyl; Ts = toluene-p-sulphonyl. *Isolated yields based on 3, mol%; all products have been characterized by NMR, GC-MS and elemental analysis [9]. *dIsolated yields based on 4, mol%; all products have been characterized by NMR spectroscopy and elemental analysis [9]

Acknowledgements. We thank the C.N.R. (Rome), the Ministero della Università e della Ricerca Scientifica e Tecnologica (MURST) and the Consorzio Interuniversitario per le Biotecnologie (CIB) for financial assistance.

References

- [1] Stammer CH. Tetrahedron 1990;46:2231-2254.
- [2] Hintermann T, Gademann K, Jaun B, Seebach D. Helv. Chim. Acta 1998, 81, 983-1002.
- [3] Hanessian S, Luo X, Schaum R, Michnick S. J. Am. Chem. Soc. 1998, 120, 8569-8570.
- [4] Galeazzi G, Mobbili G, Orena M. Tetrahedron: Asymmetry 1997;8:133-137.
- [5] Doyle MP, Austin RE, Bailey AS, Dwyer MP, Dyatkin AB, Kalinin AP, Kwan MMY, Liras S, Oalmann CJ, Pieters RJ, Protopopova MN, Raab CE, Roos GHP, Zhou Q-L, Martin SF. J. Am. Chem. Soc. 1995;117:5763-5775.
- [6] Chan S, Braish TF. Tetrahedron 1994;50:9943-9950.
- [7] Baldovini N, Bertrand M-P, Carrière A, Nouguier R, Plancher J-M. J. Org. Chem. 1996;61:3205-3208.
- [8] Substituents (R'=C₆H₅ or P=Ts) which stabilize the carbanion at C3 give rise to cyclopropanation under milder conditions. However, the great basicity of DBU (pKa = 11.5) affords a high yielding ring-closure also when R'= alkyl and P = Bn, though higher temperatures, longer reaction times, R" = alkyl and a greater excess of DBU are required. On treating the diastereomeric mixture 2a,b with a catalytic amount of DBU (10 mol%) in refluxing CH₃CN, the 2b/2a ratio increases significatively through C3-epimerization, indicating that the trans lactams 2b are substrates of cyclopropanation.
- [9] Representative data for compounds 4 and 5. 1,5-dimethyl-3-aza-2-oxobicyclo[3.1.0]hexane, white solid: ¹H-NMR (CDCl₃, 200MHz) & 0.68 (d, 1H, J = 4.32 Hz); 0.85 (d, 1H, J = 4.32); 1.26 (s, 3H); 1.30 (s, 3H); 3.19 (d, 1H, J = 9.85 Hz); 3.35 (d, 1H, J = 9.85); 5.93 (bs, 1H). GC-MS (EI, 70 eV): m/z 125 (18%, M¹), 110 (13%), 97 (77%), 82 (100%), 67 (48%), 41 (47%). Elemental analysis for C₇H₁₁NO: Calcd. C, 67.17%; H, 8.85%; N, 11.19%. Found. C, 67.13%; H, 8.92%; N, 11.18% cis-1-Aminomethyl-1,2-dimethyl-2-carboxycyclopropane hydrochloride, white crystals: ¹H-NMR (D₂O, 200MHz) & 0.86 (s, 2H); 1.25 (s, 3H); 1.34 (s, 3H); 3.30 (d, 1H, J = 10.80 Hz); 3.45 (d, 1H, J = 10.80 Hz). Elemental analysis for C₇H₁₄ClNO₂: Calcd. C, 46.80%; H, 7.85%; N, 7.80%. Found. C, 46.83%; H, 7.89%; N, 7.78%.